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Abstract

An adjoint optimization method is utilized to design an inviscid outer wall shape required for a turbulent flow field solution of the
So—Mellor convex curved wall experiment using the Navier—Stokes equations. The associated cost function is the desired pressure
distribution on the inner wall. Using this optimized wall shape with a Navier—Stokes method, the abilities of various turbulence
models to simulate the effects of curvature without the complicating factor of streamwise pressure gradient are evaluated. The one-
equation Spalart-Allmaras (SA) turbulence model overpredicts eddy viscosity, and its boundary layer profiles are too full. A
curvature-corrected version of this model improves results, which are sensitive to the choice of a particular constant. An explicit
algebraic stress model does a reasonable job predicting this flow field. However, results can be slightly improved by modifying the
assumption on anisotropy equilibrium in the model’s derivation. The resulting curvature-corrected explicit algebraic stress model
(EASM) possesses no heuristic functions or additional constants. It slightly lowers the computed skin friction coefficient and the
turbulent stress levels for this case, in better agreement with experiment. The effect on computed velocity profiles is mini-

mal. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

It has long been recognized that many turbulence models in
use today are incapable of producing correct physical behavior
near curved surfaces. Much of this information comes from the
use of boundary layer codes (e.g., see Wilcox, 1998) applied to
curved flows with near-zero pressure gradient (e.g., So and
Mellor, 1973; Gillis and Johnston, 1983). The few applications
of Navier-Stokes codes to curved wall-bounded flows have
generally been for cases with substantial pressure gradients,
such as the U-duct test case of Monson and Seegmiller (1992).
The use of a test case with pressure gradient can complicate the
analysis by making it difficult to isolate the effects of curvature
from the effects of pressure gradient. Also, in the Monson and
Seegmiller case for example, one must contend with boundary
layer separation and consequently a loss of two-dimensional-
1ty.

Even though experiments such as So and Mellor and Gillis
and Johnston are excellent validation cases for turbulence
model evaluation because they isolate the effects of curvature
on flow field dynamics, their usefulness has been restricted to
boundary layer solution methodologies. This restriction is due
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to the fact that in these experiments the outer wall shape has
not been explicitly documented. The only information re-
corded is that the outer wall was manually adjusted during the
experiment to yield the desired (near-zero) pressure gradient
along the inner curved wall. Additionally, in the case of So and
Mellor, a local tangential jet was used at the outer wall near
the start of the curve to maintain attached flow on this wall;
while in the case of Gillis and Johnston, local boundary layer
bleeding accomplished the same thing. From the standpoint of
boundary layer methods, this information is adequate. How-
ever, these issues produce a significant challenge for the
modeling of the entire two-wall setup, as is required in a Na-
vier-Stokes simulation, and preclude this type of experimental
data from being more fully utilized.

Today, with advances made in optimization methods in
CFD, it is now possible to find an outer wall shape that yields
a specified pressure distribution on the inner wall. As a result,
Navier—Stokes simulations can be relatively easily accom-
plished on test cases for which boundary layer codes were the
only viable option in the past.

In previous work (Rumsey et al., 2000), three turbulence
models were used to investigate the U-duct flow of Monson
and Seegmiller. The three models employed were the one-
equation Spalart-Allmaras (SA) (Spalart and Allmaras, 1994),
two-equation Menter shear stress transport (SST) (Menter,
1994), and two-equation explicit algebraic stress model
(EASM) (Rumsey et al., 2000), which is based on the work of
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Notations

et reference speed of sound

a;, C;, CV, C!' pressure-strain model constants

b anisotropy tensor

Ch constant in SA model

cr skin friction coefficient, 7.,/ puZ;

¢ surface pressure coefficient, (p — prr)/
%pu?*ef

Crls Cray Cr3 constants in SARC model

C., Co constants in e-equation

D flow parameter, [1 (> + W?2)]'?

d normal distance from the wall

I rotation/curvature correction function in
SARC model, Eq. (15)

fo function in SA model

g function in EASM, Eq. (4)

K turbulent kinetic energy

M Mach number, uyer /s

P part of production term in SA model

P part of production term in SARC model

P K production term

p pressure

R radius of curvature

R* flow parameter, Eq. (14)

r flow parameter, S/W

7 flow parameter in SARC model, Egs. (16),
(17)

Sij kinematic strain rate tensor, (Ou;/0x;+

S scalar measure of strain, (ZS,-]-S,,)'/ 2

K length measured along inner wall

t time

ut wall variable, u/v*

u,v velocities parallel and normal to inner wall
Uref inlet (reference) velocity

u, o'y turbulent normal stresses, Egs. (19), (20)
u'v' turbulent shear stress, Eq. (182

v wall-friction velocity, (ty,/ p)l/

W rotation rate tensor, (Ou;/0x; — Ou;/0x;)/2
w; “effective” rotation rate tensor in EAS-
w scalar measure of rotation, (ZI/VU-VV,»j)l/2
X,y Cartesian coordinates

y+ wall variable, dv*/v

Greeks

o strain-rate tensor principal axes angle

0 boundary layer thickness

0ij Kronecker delta

€ dissipation rate of K

€ijic alternating tensor, (i — j)(j — k)(k —i)/2
Yos V15 Vor Vi parameters in EASM, Egs. (5), (6)

Ty turbulent stress tensor

Ty wall shear stress

v kinematic viscosity

i modified eddy viscosity term in SA model
(2] body tangent vector angle

Q;; transformation tensor, Eq. (10)

Wy components of system rotation rate vector

Gatski and Speziale (1993). All models behaved similarly in the
curved region, and all failed to predict the suppression of the
turbulent shear stress caused by the convex curvature. Overall,
the EASM was judged to be superior to the other two models
for this flow field. However, as mentioned above, it is difficult
to isolate the effects of curvature from other effects in the
Monson and Seegmiller case.

In the present study, we model the So—Mellor case, which
removes the complications of pressure gradient and boundary
layer separation from consideration. Two of the above tur-
bulence models (SA and EASM) are employed. Both of these
turbulence models include recently developed curvature cor-
rections, and can be run both with and without the corrections
in place. We first describe an optimization method used to
determine the outer wall shape, given the So—Mellor experi-
mental inner wall pressure distribution. We then apply a Na-
vier-Stokes code to the case. We attempt to answer the
following questions regarding the isolated effect of curvature in
zero pressure gradient flow:

1. how well do existing models without curvature correction
handle convexly curved wall-bounded flow?

2. what aspects of the flow are missed, and how significant are
the missed effects?

3. how much improvement is gained by employing curvature
correction terms to the turbulence models?

2. The optimization method

In the fully discrete adjoint approach for design optimiza-
tion, described in Nielsen and Anderson (2001), Anderson and
Bonhaus (1999), and Nielsen and Anderson (1999), a cost
function is defined and augmented with the flow equations as

constraints. The approach is used in an unstructured-grid
framework to compute design sensitivities using either the
Euler or the Navier-Stokes equations. Once the sensitivity
derivatives have been obtained using the adjoint methodology,
a quasi-Newton method, referred to as KSOPT (Wrenn, 1989),
is used to drive the optimization process.

A test case was devised to test the ability of the optimiza-
tion method to design an outer wall shape for a channel flow
given a target pressure distribution on the lower wall. Subsonic
flow (M =0.2) was computed using the Euler equations
through a curved channel whose walls are defined by

Yupper = €08[(x + 5)/3.18309886] + 0.48, (1)
Hower = c08[(x + 5)/3.18309886], (2)

and where the walls are straight (horizontal) for —12 < x < —5
and for 5 < x < 12. Then, the outer wall shape was arbitrarily
altered as an initial condition and fed into the optimization
method along with the lower wall target pressure distribution
from the original computation. The shape of the outer wall
was parameterized with 36 design variables. The optimization
method achieved the desired lower surface pressure distribu-
tion (not shown) by solving for the correct outer wall shape,
shown in Fig. 1. The maximum error at any grid point from
the exact wall shape is less than 1% of the channel width after
20 design cycles.

In the So—Mellor case, the cost function to be minimized is
the difference in the pressure distribution on the inner wall
from experimental data. The shape of the outer wall is pa-
rameterized with 28 design variables. To avoid having to
contend with boundary layer separation along the outer wall,
the optimization is conducted using the Euler equations and
the method is run until the cost function reaches a suitable
level of convergence.
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Fig. 1. Wall shape for optimization method test case, with every eighth
point of design optimization result shown.

3. Numerical method and turbulence models

The Navier-Stokes CFD code used in the current investi-
gation is CFL3D (Krist et al., 1998), a widely used structured-
grid upwind finite-volume method. Details about the code can
be found in the User’s Manual referenced.

The two turbulence models used are the one-equation SA
model (Spalart and Allmaras, 1994) and the two-equation
EASM (Rumsey et al., 2000). However, note that the EASM
has an additional minor modification, described in Gatski and
Rumsey (2001). To summarize, the implicit equation for the
Reynolds stress anisotropy tensor in EASM is

— (1/as)by; — a3 (buSy; + Siby; — 3buSudi;)

+ ax(by Wi — Wibyy) = a1 Sy, (3)
where b; = 1;;/(2K) — 9;;/3, and K = 1,,/2 is the turbulent
kinetic energy. The coefficients a; are given by a; = (3 — C2),
a, = %(2 — C4), asz = %(2 — C}), and as = gK/F, where Cz =
0.36, C; =1.25, and C; = 0.4. The modification is in the
function g, now given by

*9 * _1
g:[‘/ogﬂl} : 4)
where
Yo =7 — 1 (5)
and
CEZ_CE,l)
N=En el —— ) 6
=71 ( Co 1 (6)

and where 7y =C}/2+1, y, =C)/2—-1, C) =34, C] =138,
C,y =144, and Cp, = 1.83.

Gatski and Rumsey (2001) showed that a source of error in
the EASM for curved flows was caused by the assumption of
anisotropy equilibrium in the Cartesian frame of reference in
the derivation of the model directly from the full Reynolds
stress model
Db,‘/

D =0 (7

In the study of non-Newtonian constitutive relations (e.g.,
Schunk and Scriven, 1990; Souza Mendes et al., 1995), a

measure of relative rotation rate is based on the principal axes
of the strain rate tensor. By assuming a transformed form of
Eq. (7) to hold in this principal axes frame, a new form of the
EASM can be derived that takes into account the flow field
curvature. This new form is termed EASM curvature-corrected
(EASMCO).

In the transformed coordinate frame, the following equa-
tion holds:

Dby, _

Dt
where b;; is the transformed anisotropy tensor. Written in the
Cartesian frame, Eq. (8) becomes

DU — by — by 9)
The Q;; tensor is related to the rate of rotation between the
principal axes (barred) system and the Cartesian (unbarred)
system.

The method for implementation of EASMCC in 2D is as
follows. The rotation rate tensor W; in the model is replaced by
an “‘effective” Wi =W;— Q;;/a,, where the constant a, is de-
fined by the pressure—strain correlation model. The tensor Q;;
is given by

0, )

0 Do/Dt¢
-Da/Dt 0

and Da/Dr is the Lagrangian derivative of the strain-tensor
principal axes, given by

De D (83 +85)" = s
Dt D¢ ‘

Si2
This expression can be reduced to (see Spalart and Shur, 1997)

Dx 1 DS, DSII]

—= s -5
Dr  2(8% +52) [ ""Dr " Dt

(11)

(12)

In practice, a term is added to the denominator of Eq. (12) to
avoid division by zero as well as to avoid spurious fluctuations
in Do/Dt in regions of very low gradient. Note that for a
simple 2D azimuthal flow with only a uy component of velocity
(a function of radius), the following relation can be derived:

Do 1
Dt 2
where S = (ZSijS,»j)l/2 and W = (ZVKJWU)I/Z. This analytical

function can be shown to hold in general only for %> very close
to 1, where % is defined by

_wy
ORI

and {} represents the trace: {Wz} = W;W; = —W;W; and
{Sz} = S;S; = S;;S;. Eq. (13) has proved to be useful as a
check (in regions where %* =~ 1) on the more complicated
numerics required to obtain Do/Dt¢ exactly, but it is of limited
use in general. We use the exact Do/Dr term given by Eq. (12)
for all the results in this paper.

A curvature correction for the SA model has been devel-
oped by Spalart and Shur (1997), and applied to a variety of
flows in Shur et al. (2000). This correction, Spalart-Allmaras
for rotation/curvature (SARC) was similarly derived based on
the rate of change of the principal axes of the strain rate ten-
sor, but it also includes a heuristic function f,; (that multiplies
the model’s production term), which is not present in the
EASMCC.

(S — W) sign(W,), (13)

%2_

(14)
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Table 1
Wall points (in.) used for So—Mellor case

Xinner Yinner Xouter Youter

0.2400E + 02 0.0000E + 00 0.2400E + 02 0.6000E + 01
0.3350E + 02 0.0000E + 00 0.3406E + 02 0.6000E + 01
0.3580E + 02 0.0000E + 00 0.3668E + 02 0.6004E + 01
0.3780E + 02 0.0000E + 00 0.3905E + 02 0.5983E + 01
0.3957E + 02 0.0000E + 00 0.4119E+ 02 0.5969E + 01
0.4116E + 02 0.0000E + 00 0.4315E+02 0.5954E + 01
0.4258E + 02 0.0000E + 00 0.4495E + 02 0.5958E + 01
0.4388E + 02 0.0000E + 00 0.4661E + 02 0.5978E + 01
0.4506E + 02 0.0000E + 00 0.4815E+02 0.6171E+01
0.4615E +02 0.0000E + 00 0.4957E + 02 0.6390E + 01
0.4716E + 02 0.1652E - 02 0.5092E + 02 0.6508E + 01
0.4810E + 02 —0.5451E - 02 0.5220E + 02 0.6466E + 01
0.4898E + 02 —0.6397E - 01 0.5339E + 02 0.6254E + 01
0.4980E + 02 —0.1668E + 00 0.5448E + 02 0.5904E + 01
0.5057E + 02 —-0.3273E+ 00 0.5548E + 02 0.5456E + 01
0.5128E +02 —0.5392E + 00 0.5639E + 02 0.4941E+01
0.5194E + 02 —0.7944E + 00 0.5723E+02 0.4379E + 01
0.5255E+02 —0.1081E+01 0.5799E + 02 0.3784E + 01
0.5313E+02 —0.1391E+01 0.5870E + 02 0.3165E + 01
0.5366E + 02 -0.1721E+01 0.5935E +02 0.2530E + 01
0.5416E + 02 —0.2067E + 01 0.5995E + 02 0.1886E + 01
0.5462E + 02 —0.2428E+ 01 0.6051E + 02 0.1236E+ 01
0.5506E + 02 —0.2802E + 01 0.6104E + 02 0.5848E + 00
0.5546E + 02 —-0.3189E + 01 0.6155E +02 —0.6808E - 01
0.5584E + 02 —0.3588E + 01 0.6202E + 02 —0.7222E+ 00
0.5619E + 02 —0.3999E + 01 0.6248E + 02 —0.1379E+ 01
0.5651E + 02 —0.4419E+ 01 0.6290E + 02 —0.2040E + 01
0.5682E + 02 —0.4849E + 01 0.6331E+02 -0.2707E+ 01
0.5710E +02 —0.5288E + 01 0.6369E + 02 —0.3382E + 01
0.5736E + 02 —0.5737E+01 0.6404E + 02 —0.4069E + 01
0.5759E + 02 —0.6195E + 01 0.6435E + 02 —0.4768E + 01
0.5781E + 02 —0.6663E + 01 0.6464E + 02 —0.5480E + 01
0.5801E +02 —0.7142E+ 01 0.6489E + 02 —0.6209E + 01
0.5819E + 02 —0.7631E+01 0.6510E + 02 —0.6953E+01
0.5835E+02 —0.8133E+01 0.6528E + 02 —-0.7713E+ 01
0.5848E + 02 —0.8646E + 01 0.6541E + 02 —0.8490E + 01
0.5860E + 02 -0.9173E+01 0.6550E + 02 —0.9282E +01
0.5869E + 02 -0.9714E+ 01 0.6554E + 02 —0.1009E + 02
0.5876E + 02 —0.1027E + 02 0.6554E + 02 —0.1091E + 02
0.5880E + 02 —0.1084E + 02 0.6550E + 02 —0.1175E+02
0.5881E + 02 —0.1143E+02 0.6542E + 02 —0.1261E+02
0.5880E + 02 —0.1204E + 02 0.6530E + 02 —0.1348E+ 02
0.5876E + 02 —0.1266E + 02 0.6514E +02 —0.1438E + 02
0.5868E + 02 —0.1331E+02 0.6495E + 02 —0.1529E+ 02
0.5856E + 02 —0.1398E + 02 0.6471E +02 —0.1623E+ 02
0.5840E + 02 —0.1467E + 02 0.6443E + 02 —0.1720E + 02
0.5819E + 02 —0.1538E+02 0.6411E+02 —0.1820E + 02
0.5793E+02 —0.1612E+ 02 0.6373E+02 —0.1923E+02
0.5760E + 02 —0.1688E + 02 0.6327E + 02 —0.2028E + 02
0.5719E + 02 —0.1766E + 02 0.6273E + 02 —0.2136E+ 02
0.5671E + 02 —0.1847E + 02 0.6208E + 02 —0.2246E + 02
0.5613E+02 —0.1929E + 02 0.6129E + 02 —0.2356E + 02
0.5544E + 02 —0.2014E + 02 0.6033E + 02 —0.2464E + 02
0.5462E + 02 —0.2099E + 02 0.5918E + 02 —0.2567E + 02
0.5363E + 02 —-0.2182E +02 0.5782E +02 —0.2663E + 02
0.5246E + 02 —0.2263E + 02 0.5627E + 02 —0.2756E + 02
0.5110E + 02 —0.2345E + 02 0.5454E + 02 —0.2846E + 02
0.4957E + 02 —0.2433E+ 02 0.5263E + 02 —0.2944E + 02
0.4783E + 02 —0.2533E+02 0.5055E + 02 —0.3056E + 02
0.4584E + 02 —0.2647E + 02 0.4826E + 02 —0.3185E + 02
0.4354E +02 —0.2780E + 02 0.4572E +02 —0.3332E+02
0.4084E + 02 —0.2935E + 02 0.4288E + 02 —0.3505E + 02
0.3761E + 02 -0.3122E+ 02 0.3962E + 02 —0.3699E + 02
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In the SA model, a portion of the production term is given
by the expression P = ¢y [l — fp]W7. In the current imple-
mentation of the SARC model, P is replaced by
P = Cpl [frl —ﬁz] W\j, where

*

o
(1+7r)

and ¢,; = 1, ¢, = 12. The constant ¢,3 has been assigned to be
both 1.0 and 0.6 in Spalart and Shur (1997) (Spalart and Shur
suggest that they are still experimenting with the function f,,).
In the current study, we use both values, and show that
¢3 = 0.6 is the more appropriate choice for this case. The
function * is given by r* = S/W. It is related to the flow pa-
rameter defined in Eq. (14). The 7 term is computed using

ﬁl = (1 + Crl) [1 — 3 tanfl(cyzf)] — Cy (15)

DS;;
7= 2Wlij |: Dtj + (eimnSjn + GjmnS,‘,,)U),n:l /D4, (16)

where the o, term represents the system rotation and
D = [1(8* + w?*)]'*. For 2D flows and no system rotation, the
expression for 7 reduces to

. _(Da) 8Wia(Sh + S)

Dt D* ’

with Do /Dt given by Eq. (12).

(17)

4. Results

In the So-Mellor experiment, the curved wall tunnel had an
aspect ratio of 8 (depth of 48 in.) and the flow along the tunnel
centerline was nominally 2D. Thus, 2D computations are ex-
pected to adequately represent the flow field. The inner wall
shape is defined by a series of nine arc segments of varying
angle and radius. The initial radius of curvature is 10 in., and
the final radius of curvature is 13.86 in. The curved wall turns
through a total of 150°. A detailed description of the inner wall
shape can be found in So and Mellor (1973). The channel
width is 6 in. at the inlet. An outer wall shape was obtained
from the optimization program, which was run in Euler mode
to obtain a shape such that the inner wall pressure distribution
matched experiment throughout most of the curved region. A
list of resulting outer wall points is given in Table 1 (only 63
points are given, for brevity). Inner wall points are given also,
for reference.

The grid employed in the Navier—Stokes computations is
shown in Fig. 2. The grid size is 257 x 161, with a minimum
normal spacing at the convex wall of 0.00015 in. This corre-
sponds with a wall variable spacing of approximately y* = 0.3.
The grid extends from 24 in. upstream of the curved wall to
approximately 18 in. downstream of the end of curvature. The
Reynolds number per inch is taken as 3.6417 x 10*, and the
nominal Mach number at the inlet is M = 0.063. At the inflow
boundary, the u-velocity profile is set based on the experi-
mentally measured skin friction and boundary layer thickness.
The turbulence quantities are set to match the experimental
levels at the same location. At the outflow boundary, pressure
is specified at p/p.s = 1, and all other quantities are extrapo-
lated from the interior of the grid. Additional details con-
cerning the boundary condition specifications can be found in
Rumsey et al. (2000).

Slip-wall boundary conditions are applied at the outer wall
in the CFD simulation. This boundary condition is consistent
with the assumption used in the optimization method, and
allows the simulation to be run without the complication of
having to contend with tangential jet or bleed boundary con-
ditions. At the inner wall, standard no-slip adiabatic solid wall
boundary conditions are employed.

10

L
o
LA L L L Y L A L Y LB B B B LA

_40\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I
10 20 30 40 50 60 70

X, inches

Fig. 2. Grid for So-Mellor case, every other point of 257 x 161 grid
shown.

For the remainder of the paper, we adopt a coordinate
system with s measured along the inner wall in the flow di-
rection and d measured normal to the inner wall. Thus, s
represents the surface coordinates, or length measured along
the inner wall surface. The boundary layer thickness at the
inflow (s = 24 in.) is approximately 0.55 in., whereas at the
start of the curvature (s = 48 in.) it is approximately 0.95 in.
Thus, at the start of curvature, the parameter 6/R is roughly
0.095. According to Patel and Sotiropoulos (1997), 6/R < 0.01
represents very mild curvature, whereas 0.1 < /R < 1 repre-
sents moderate to strong curvature. Therefore, the curvature
for this case can probably be categorized as ‘“moderate”,
whereas the Monson and Seegmiller U-duct case (with
0/R =0.5) can be categorized as “strong” (see Monson and
Seegmiller, 1992; Rumsey et al., 2000).

In the experiment, the outer wall shape was set to allow a
small pressure drop near the start of curvature, followed by a
region of nearly constant pressure all the way to the end of the
curved surface, at s = 79.43 in. Surface pressure coefficients are
shown in Fig. 3 using two different turbulence models. The
pressures match experiment very well over most of the inlet
and curved wall segments. The small differences upstream of
the start of curvature are likely due to the fact that CFD uses a
slip-wall boundary condition at the outer wall and does not
model the local tangential jet in the experiment.

The effect of grid density on a typical solution is shown in
Figs. 4 and 5. In these figures, the “fine” level is the 257 x 161
grid, “medium” has every other grid point removed in both
directions, and “‘coarse” has every other grid point removed
again. For this flow, the skin friction shows about a 3-5%
difference between the coarse grid and fine grid solutions in the
curved region, and roughly 1% difference (or less) between
results on the medium and fine grids. The turbulent shear
stress shows almost no difference between any of the grid
levels. For all the remaining results in the paper, the medium
level grid is employed.

The effect of the SARC model constant ¢,3 is shown in Fig.
6. Note that the ¢ levels are referenced to the nominal velocity
at the inlet, rather than the local “potential flow velocity at the
wall”, as reported in So and Mellor (1973). The experimental
levels have been adjusted accordingly. The original SA model
yields high ¢ levels over most of the curved wall region. When
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Fig. 3. Surface pressure coefficient, referenced to inlet conditions.
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Fig. 4. Effect of grid size on surface skin friction coefficient,
EASMCC.

SARC with ¢,; = 0.6 is used, ¢; levels agree well with experi-
ment, but SARC with ¢,; = 1.0 predicts ¢; levels that are too
low. Unless otherwise noted, for all remaining SARC results, a
value for the constant ¢,; = 0.6 is used.

Surface skin friction results using all four versions of the
turbulence models are shown in Fig. 7. EASM and EASMCC
are both low near the beginning of curvature but are relatively
close to experimental levels over much of the curved wall re-
gion beyond s =~ 55 in.; EASMCC reduces the ¢; levels from
that of EASM by only a modest amount. Overall, SARC,
EASM, and EASMCC produce similar ¢; levels over most of
the curved region in reasonable agreement with experiment.
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Fig. 5. Effect of grid size on turbulent shear stress profile at s = 71 in.,
EASMCC.
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Fig. 6. Effect of SARC model constant on surface skin friction coef-
ficient, referenced to inlet conditions.

Velocity profiles in the bend are plotted in Fig. 8. In ad-
dition to results in the curved region, profiles are shown at the
inlet (s = 24 in. station), although experimental data are not
available at this location. As mentioned earlier, the velocity
profile is set at the inflow to match the experimental ¢¢, §, and
nominal velocity using law-of-the-wall relations. As seen in the
figure, initial profiles at the inlet are essentially identical for all
four models. In the curved region, the results begin to differ.
The three models SARC, EASM, and EASMCC are very close
to each other and are in good agreement with experiment.
However, the SA model predicts higher velocity levels over the
first 20% of the boundary layer at all three stations.

Turbulent shear stress profiles are plotted in Fig. 9 for SA
and SARC and in Fig. 10 for EASM and EASMCC. All shear
and normal stress profiles, to be given below, are in the local
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Fig. 8. Velocity profiles at s = 24 in., s = 59 in., s = 67 in., and s = 71
in., referenced to inlet conditions (origin for each successive station is
shifted 0.5 units to the right).

body/normal coordinate system. Stresses in this frame are re-
lated to those in the Cartesian frame by the following relations:

u'v =30V — ui) sin(20) + UV cos(20), (18)
Wi =i, cos’ @ + Vv sin” @ + u'V, sin(20), (19)
Vv = Vv cos @ + il sin® @ — u'V, sin(26), (20)

where the subscript ¢ indicates Cartesian frame, and @ is the
angle that the body tangent vector makes with the x-axis. In
Fig. 9, the SA model significantly overpredicts the —u/v levels
in the curved region, whereas SARC agrees much better with
experiment. The differences between EASM and EASMCC in
Fig. 10 are much less marked. However, EASMCC is generally
in better agreement with experiment, particularly for
d/o > 0.3, where the turbulence is suppressed to near-zero
levels.
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Fig. 9. Turbulent shear stress profiles for the SA and SARC models at
s=24in., s =59 in., s = 67 in., and s = 71 in., referenced to inlet
conditions (origin for each successive station is shifted 0.002 units to
the right).
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Fig. 10. Turbulent shear stress profiles for the EASM and EASMCC
at s =24 in., s = 59 in., s = 67 in., and s = 71 in., referenced to inlet
conditions (origin for each successive station is shifted 0.002 units to
the right).

The turbulent normal stresses are plotted for EASM and
EASMCC in Figs. 11 and 12. Because EASM and EASMCC
are non-linear models, they can predict the normal stress dif-
ferences between #'u/ and v/v'. Results are in good agreement
with experiment at the inflow and throughout the curvature
region. The curvature correction in EASMCC has the effect of
lowering the normal stress levels slightly from those of EASM.
The v/u’ and Vv’ for SA and SARC are not shown. Linear eddy
viscosity models cannot predict the normal stress differences,
although the ability to predict these differences is generally not
considered necessary for most thin shear flow applications.

Finally, the velocity profiles are shown using wall variables
in Figs. 13-15. The theoretical log-law curve plotted in these
figures is due to Spalding (White, 1974). In the experimental
results of Fig. 13, it is noted that the effect of curvature is
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Fig. 11. s/ turbulent normal stress profiles for the EASM and
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enced to inlet conditions (origin for each successive station is shifted
0.005 units to the right).
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Fig. 12. v'v/ turbulent normal stress profiles for the EASM and
EASMCC at s =24 in., s =59 in., s = 67 in., and s = 71 in., refer-
enced to inlet conditions (origin for each successive station is shifted
0.005 units to the right).

primarily in the wake region beyond the log layer, where the u™
levels are increased at successive stations downstream. The log
layer itself remains unaffected by curvature. The SARC model
overall reflects the correct trend, increasing u® in the wake
region with downstream distance in the curve. However, the
effect is excessive when c¢,; = 1.0, and even the log layer itself is
affected by the curvature correction and loses the correct slope.
When ¢,; = 0.6, a portion of the log layer retains the correct
slope and only the region beyond y™ ~ 100 is altered. In Fig.
15, the EASMCC shows somewhat elevated wake levels of u™,
similar in character to the experiment, even with no curvature
correction. These levels are raised slightly through the use of
the curvature correction in EASMCC. In both EASM and

EASMCGC, the log layer remains in good agreement with the
theoretical slope.
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Fig. 13. Experimental velocity profiles using wall variables.
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Fig. 14. Velocity profiles using wall variables for SA and SARC
(SARC with ¢,; = 0.6 is shifted 3 units to the right, and SARC with
¢,3 = 1.0 is shifted 6 units to the right).

It is also instructive to return to check the original as-
sumption made in the derivation of the EASMCC. We already
know from previous studies (e.g., Rumsey et al., 2000) that the
assumption Eq. (7) is not valid in regions of high curvature.
We would now like to investigate the validity of the trans-
formed equation, Eq. (9). We do this by computing its actual
value (the quantity u;0b;/0x;) at various locations in the
converged solution, and comparing it to the quantity
b,‘kaj - Qlkbk/

Results are shown in Figs. 16 and 17 for Dby, /D¢ and
Dby, /Dt, respectively. The three successive curves in each
figure represent results at the three stations in the curved re-
gion. It is shown in these figures that the assumption Eq. (9) is
indeed valid in the curvature region, and is nearly exact in the
lower part of the boundary layer.
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Fig. 15. Velocity profiles using wall variables for EASM and EAS-
MCC (EASMCC is shifted 3 units to the right).
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5. Conclusions

An adjoint optimization method was shown to be useful in
determining an outer wall shape for a zero pressure gradient
curved duct flow, given the target inner wall pressure distri-
bution. This procedure, easily generalizable to other configu-
rations, extended the usefulness of the So-Mellor data base to
Navier-Stokes CFD codes. As a result, a unique evaluation of
turbulence models for predicting curvature effects was made.

The numerical study yielded the following conclusions. Of
the models studied, the standard SA model (with no curvature
correction) did the poorest job modeling the flow field with
convex curvature. Eddy viscosity levels were significantly
overpredicted, and velocity profiles were somewhat too full.
The skin friction coefficient in the curved region was over-
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Fig. 17. Comparison of actual Dby, /Dt with EASMCC assumption at
s =159 in., s = 67 in., and s = 71 in. (origin for each successive station
is shifted 0.004 units to the right).

d/s

predicted. The curvature correction in SARC significantly
improved results, lowering eddy viscosity levels and bringing
velocity profiles into better agreement with experiment. The
best choice for the model constant ¢,; was 0.6 for this test case.
A value of ¢,; = 1.0 lowered the skin friction coefficient too
much, and the log layers of the velocity profiles were signifi-
cantly altered.

EASM and EASMCC both did a good job predicting this
flow field. EASMCC was derived by assuming anisotropy
equilibrium in the reference frame defined by the principal axes
of the strain rate tensor, rather than in the Cartesian frame for
standard EASM. Unlike SARC, no heuristic functions and no
additional constants were necessary in EASMCC. The modi-
fied assumption on the anisotropy tensor was shown to be
valid in the curved region of the flow field. The resulting cur-
vature correction in EASMCC had only a minor effect for this
case compared to EASM, slightly lowering the turbulent stress
levels (in better agreement with experiment) and lowering the
skin friction coefficient by a small amount. The effect on
computed velocity profiles was minimal.

Therefore it appeared that some aspect of the EASM
enabled it to perform reasonably well for this curved-flow
case even without a curvature correction. Because the EASM
was derived directly from the Reynolds stress model, it re-
tained some of the invariance properties of the full differ-
ential form, even with the incorrect Db;;/Dt = 0 assumption.
Thus EASM yielded a better physical representation of the
turbulence than the lower-order SA model. By including the
curvature correction (in EASMCC), al/l the frame-invariance
properties were retained. This modification did improve
certain details in this flow field, but overall the effects were
relatively minor.
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